Uniaxial and biaxial ratchetting study of SA333 Gr.6 steel at room temperature
نویسندگان
چکیده
The phenomenon of ratchetting is defined as constant accumulation of plastic strain or deformation under combined steady state and cyclic loading. It can reduce the fatigue life or can cause failure of piping components or systems subjected to seismic or other cyclic loads. The uniaxial ratchetting characteristics of SA333 Gr.6 steel have been investigated at room temperature in the present paper. The specimens were subjected to cyclic axial stress with a constant mean stress of 200 MPa and a varying amplitude stress of 149, 174, 199 and 224 MPa. Tests were also performed on 203.2 mm, Sch 80, SA333 Gr. 6 carbon steel straight pipe. The pipe was subjected to a constant internal pressure of 18 MPa and a cyclic bending load. The effects of amplitude of load on the rate of ratchetting have also been investigated in the present paper. The uniaxial experiments showed that specimens exhibited shakedown at low stress amplitude after some strain accumulation. However, specimens experienced continuous ratchetting at higher stress amplitudes with no shakedown before failure. Ovalization of the pipe crosssection was observed when the pipe was subjected to constant internal pressure and cyclic point load. Local bulging was observed at higher loading. The pipe did not show any shakedown behaviour for the given cycles of loading and exhibited continuous ratchetting under the varying amplitude loading.
منابع مشابه
Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories
In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver nanoplates embedded in elastic media are investigated using finite difference method (FDM). The uniform temperature change is utilized to study thermal effect. The surface energy effects are taken into account using the Gurtin-Murdoch’s theory. Using the principle of virtual work, the...
متن کاملBiaxial High Cycle Fatigue of a Type 304L Stainless Steel: Cyclic Strains and Crack Initiation Detection by Digital Image Correlation
A series of biaxial High Cycle Fatigue tests at room temperature is performed to build up an extensive and well-documented database. The testing specimen is a maltese cross thinned in its centre with non homogeneous strain/stress fields. The experimental protocol uses exclusively full-field strain measurements. The strains (cyclic and residual) as well as the crack initiation detection are obta...
متن کاملDamage Behavior in Modern Automotive High Strength Dual Phase Steels During Uniaxial Tensile Deformation
In the present research, damage mechanisms during room temperature uniaxial tensile testing of two different modern high strength dual phase steels,DP780 and DP980, were studied. Detailed microstructural characterization of the strained and sectioned samples was performed by scanning electron microscopy (SEM). The results revealed that interface decohesion, especially at the triple junctions of...
متن کاملCrystallographic texture evolution in 1008 steel sheet during multi-axial tensile strain paths
This paper considers the crystallographic texture evolution in a 1008 low carbon steel. The texture evolution along uniaxial, plane strain and balanced biaxial strain states were measured. For uniaxial testing, grains tend to rotate such that the {111}〈11̄0〉 slip directions are aligned with the loading axis. For plane strain and balanced biaxial strain states, the majority of grains are distribu...
متن کاملRatchetting of porcine skin under uniaxial cyclic loading.
Skin soft tissue (e.g., porcine skin) was tested in vitro under uniaxial cyclic loading, and its biomechanical responses were investigated to realize some basic properties which are very significant in assessing the fatigue life of skin soft tissue. The results show that a cyclic accumulation of peak and valley strain, which can be terminologically called as ratchetting in terms of material sci...
متن کامل